施 偉1,2,李彥軍1,袁壽其1,鄧東升2,劉 軍2,張大慶1
1. 江蘇大學(xué)國家水泵系統(tǒng)及工程技術(shù)研究中心,鎮(zhèn)江 212013;
2. 南水北調(diào)東線江蘇水源有限責(zé)任公司,南京 210029
摘要:針對目前比轉(zhuǎn)數(shù)超過500 的蝸殼混流泵研究較少,該文基于理論分析、CFD 技術(shù)和模型試驗(yàn)的研究方法,以某高比轉(zhuǎn)數(shù)混流泵的葉輪與蝸殼在設(shè)計(jì)工況下的良好匹配為目標(biāo),利用速度系數(shù)法對蝸殼結(jié)構(gòu)進(jìn)行優(yōu)化設(shè)計(jì),設(shè)計(jì)了一臺比轉(zhuǎn)數(shù)為585 的高比轉(zhuǎn)數(shù)雙蝸殼混流泵,并對優(yōu)化后的高比轉(zhuǎn)數(shù)雙蝸殼混流泵的內(nèi)部流動特性進(jìn)行了分析。將外特性試驗(yàn)數(shù)據(jù)與數(shù)值計(jì)算結(jié)果作對比,驗(yàn)證了該文數(shù)值計(jì)算模型與方法的準(zhǔn)確性。研究結(jié)果表明,雙蝸殼方案下水泵在偏離設(shè)計(jì)工況下的效率明顯高于單蝸殼方案;雙蝸殼結(jié)構(gòu)混流泵的徑向力在相同工況下比單蝸殼結(jié)構(gòu)的徑向力低,雙蝸殼結(jié)構(gòu)在保持原有水力性能的基礎(chǔ)上還可以起到減小徑向力的作用;不同工況下雙蝸殼混流泵葉輪徑向力矢量軌跡圖分布呈類似正方形的封閉區(qū)間分布,徑向力合力隨時(shí)域呈現(xiàn)周期性變化,每個(gè)轉(zhuǎn)動周期內(nèi)有4 個(gè)波峰和波谷;設(shè)計(jì)工況下的瞬態(tài)徑向力合力最小,而小流量工況下的瞬態(tài)徑向力合力最大且最不穩(wěn)定,說明當(dāng)雙蝸殼混流泵長期運(yùn)行在小流量工況下會增加安全事故隱患。研究成果為高比轉(zhuǎn)數(shù)雙蝸殼混流泵的設(shè)計(jì)以及內(nèi)部流動特性研究提供了參考。
關(guān)鍵詞:泵;優(yōu)化;設(shè)計(jì);高比轉(zhuǎn)數(shù);雙蝸殼;流動特性;徑向力
Design and internal flow field analysis of high specific mixed-flow pump with double volutes
Shi Wei1,2, Li Yanjun1, Yuan Shouqi1, Deng Dongsheng2, Liu Jun2, Zhang Daqing1
(1. National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China;
2. Jiangsu Water Source Co.,Ltd. of the Eastern Route of South-to-North Water Division, Nanjing 210029, China)
Abstract: Global energy issues affect the economic development, it is the base of improving national standard of living conditions. According to incomplete statistics, power consumption of pumps account approximately 17% of total generating capacity. Thereby increasing the efficiency of the pump is necessary to energy conservation which also has a very important significance on creating a resource-saving society. Mixed-flow pumps are more and more widely applied to industrial and agricultural production, the requirement of the performance of the mixed-flow pump become increasingly high. When the working condition deviates from the designed condition, the flow filed at impeller outlet does not match well with the flow field at volute inlet, which will lead to the efficiency drop of mixed-flow pump. Reasonable design of mixed-flow pump impeller and volute can improve the distribution of flow field, and then improve the hydraulic performance of the mixed-flow pump. Based on theoretical analysis, numerical simulation and model experiment research methods, impeller and volute matching optimization of high specific mixed-flow pump with volute were conducted. This paper developed a high-performance mixed-flow pump model with double volutes whose ns equals to 585 with the target of perfect match between impeller and volute under different flow rate conditions. The full three-dimensional numerical calculation internal flow field and radial force of the optimal designed high specific speed mixed-flow pump with double volutes was investigated. Numerical simulation of the pump used the standard κ-ε turbulence model. The κ-ε turbulence model was considered to be a model which can predict the hydraulic performance and simulate the internal flow field accurately. The calculation domain contains inlet pipe, runner, volute, outlet pipe. And the mesh of inlet pipe and outlet pipe adopted unstructured mesh, the mesh
of runner and volute adopted unstructured mesh. The results of numerical simulation were in agreement with the experimental ones, which indicated that the numerical simulation model and the calculation methods could be used to predict the internal-flow in a double volutes mixed-flow pump. The results showed that: the high efficiency area in the double-volutes pump was significantly broadened compared with the single-volute pump. And the internal flow streamline was very smooth at working condition in the double volutes mixed-flow pump. The pressure distribution in the double volutes pump revealed a increasing trend from impeller inlet from inlet outlet, which could make the impeller do work to the fluid effectively. The efficiency of double-volutes pump at designed flow rate was higher than the single-volute pump; the radial force in the double-volute pump was also smaller than the single-volute pump, which indicated that the double-volutes program not only keeped superior hydraulic performance but also could significantly reduce the radial force in comparison with the single-volute program; The radial force vector trail always presented a square distribution and the radial force fluctuation was always regularly, which contains 4 crests and 4 troughs in one rotating period. The conclusion in this paper had reference value for the design and study of internal flow in the mixed-flow pump.
Keywords:pump; optimization; design; high specific speed; double-volutes; internal flow field characteristics; radial force
0 引 言
混流泵`1`利用葉輪旋轉(zhuǎn)產(chǎn)生的離心力和推力的聯(lián)合作用來輸送液體,斜向出流,又稱斜流泵,吸取了離心式和軸流式兩方面設(shè)計(jì)理論之優(yōu)點(diǎn),在結(jié)構(gòu)性能上,它介于離心泵`2-4`和軸流泵`5-8`之間,兼有離心泵和軸流泵兩方面的優(yōu)點(diǎn),是一種較為理想的泵型。
Goto A`9`和Manivannan`10`等對導(dǎo)葉式混流泵內(nèi)部流動特性進(jìn)行了研究。Kato 等`11`利用大渦模擬的方法對混流泵內(nèi)部旋轉(zhuǎn)失速機(jī)理進(jìn)行了初步的探索。江蘇大學(xué)流體機(jī)械工程技術(shù)研究中心開發(fā)了高比轉(zhuǎn)數(shù)導(dǎo)葉式混流泵211-80 模型`12`,其最高效率點(diǎn)的比轉(zhuǎn)數(shù)為800,適用揚(yáng)程4~9 m,已進(jìn)入傳統(tǒng)軸流泵領(lǐng)域,并且有過流量大、效率高、高效范圍寬、無明顯的不穩(wěn)定區(qū)等優(yōu)點(diǎn)。但由于導(dǎo)葉式混流泵同軸流泵結(jié)構(gòu)相近,均帶有空間導(dǎo)葉,且混流泵的空間導(dǎo)葉軸向長度較長,再加上出水流道的軸向高度,使整個(gè)立式泵裝置的軸向長度過大,常會帶來以下缺點(diǎn):在低揚(yáng)程泵站中會使出水流道的型線轉(zhuǎn)彎角度過大,增加流道的水力損失,降低裝置效率`13-14`。水泵軸過長,降低了機(jī)組運(yùn)行的穩(wěn)定性`15-18`。水泵軸承長期浸沒于水下,運(yùn)行環(huán)境差,對軸承的潤滑和密封裝置要求較高`19-21`。而蝸殼混流泵由于是徑向擴(kuò)散,軸向尺寸短,能夠更好地適用于低揚(yáng)程泵站;同時(shí)軸向尺寸的降低增加了機(jī)組的運(yùn)行穩(wěn)定性和可靠性;由于沒有固定后導(dǎo)葉,泵體可以采用抽芯結(jié)構(gòu),安裝檢修方便;泵房高度降低,節(jié)省土建投資。正是由于蝸殼混流泵所具有的以上優(yōu)勢,使得高比轉(zhuǎn)數(shù)蝸殼混流泵的研究開發(fā)成為了必然。
談明高等`22`采用線性分布的軸面流線速度環(huán)量和葉片角度變化規(guī)律來設(shè)計(jì)葉輪,采用圓弧翼型進(jìn)行固定導(dǎo)葉的設(shè)計(jì),蝸殼斷面采用非對稱斷面,進(jìn)而設(shè)計(jì)了一種葉片可調(diào)的比轉(zhuǎn)數(shù)為564 的蝸殼式混流泵。對于本文所研究的高比轉(zhuǎn)數(shù)蝸殼混流泵,國內(nèi)外與之相關(guān)的文獻(xiàn)與報(bào)道較少`23-25`。本文首次對某高比轉(zhuǎn)數(shù)混流泵的蝸殼結(jié)構(gòu)進(jìn)行優(yōu)化設(shè)計(jì),進(jìn)而得到一臺滿足設(shè)計(jì)要求的高比轉(zhuǎn)數(shù)蝸殼式混流泵,并且對蝸殼式混流泵在不同工況下的內(nèi)部流動特性進(jìn)行了分析。
1 單蝸殼設(shè)計(jì)方案
混流泵模型的設(shè)計(jì)參數(shù):設(shè)計(jì)流量Qd=0.33 m3/s,設(shè)計(jì)揚(yáng)程H=9 m,額定比轉(zhuǎn)數(shù)ns=585,效率為85%。
由于本文主要研究不同蝸殼方案對混流泵性能的影響,所以對于葉輪的設(shè)計(jì)不再進(jìn)行細(xì)致的闡述,葉輪的主要結(jié)構(gòu)參數(shù)如下:葉輪進(jìn)口直徑D1=280 mm,葉輪最大直徑Dmax=320 mm,葉輪葉片數(shù)Z=4。葉輪葉片的三維造型圖如圖1 所示。
圖1 葉輪葉片三維模型圖
Fig.1 3-dimension of model runner
1.1 蝸殼基本尺寸確定
取蝸殼基圓直徑D3=1.05D2=315 mm。隔舌安放角φ0=45°。下面主要就蝸室斷面面積的確定展開分析。
蝸室在進(jìn)行設(shè)計(jì)時(shí)先計(jì)算第8 斷面,其他斷面以第8斷面為基礎(chǔ)進(jìn)行計(jì)算,并采用速度系數(shù)法確定。計(jì)算公式為
式中v3為蝸室斷面的平均速度,m/s;H 為揚(yáng)程,m;k3為速度系數(shù),可由統(tǒng)計(jì)資料查取。
對于本文所研究的高比轉(zhuǎn)數(shù)蝸殼式混流泵統(tǒng)計(jì)資料稀少,因此k3 很難從現(xiàn)有資料獲取。這里根據(jù)相關(guān)經(jīng)驗(yàn)暫取k3=0.32,則v3=4.25 m/s。
第8 斷面的面積計(jì)算公式
式中F8為第8 斷面面積,m2;Q 為流量,m3/s。
其他斷面的面積,按蝸室各斷面速度相等確定。蝸殼初步設(shè)計(jì)方案的截面圖如圖2 所示。
圖2 蝸殼初步設(shè)計(jì)方案
Fig.2 Original program of volute
1.2 模型外特性數(shù)值計(jì)算
基于CFD 商用軟件CFX,利用有限體積法對對初步設(shè)計(jì)的混流泵模型進(jìn)行外特性數(shù)值計(jì)算,數(shù)值計(jì)算中控制方程的離散采用有限體積法,速度和壓力的耦合采用SIMPLEC 算法。采用標(biāo)準(zhǔn)κ-ε湍流模型對控制方程進(jìn)行封閉??刂品匠倘缦?/span>
式中ρ 為流體密度,kg/m3;ui、uj為速度矢量。
計(jì)算域網(wǎng)格劃分采用自適應(yīng)性較強(qiáng)的非結(jié)構(gòu)化網(wǎng)格。網(wǎng)格無關(guān)性驗(yàn)證如表1 所示,由表1 可以看出當(dāng)網(wǎng)格總數(shù)大于383 萬后,揚(yáng)程波動較小,經(jīng)過網(wǎng)格無關(guān)性檢驗(yàn)并綜合考慮計(jì)算器性能,確認(rèn)網(wǎng)格劃分采用方案3。進(jìn)口采用質(zhì)量流量邊界條件、出口采用自由出流邊界條件,近壁面采用標(biāo)準(zhǔn)壁面函數(shù),固壁面采用無滑移壁面處理,數(shù)值計(jì)算精度設(shè)定為10-5,同時(shí)設(shè)置了揚(yáng)程監(jiān)測點(diǎn),當(dāng)揚(yáng)程的監(jiān)測值趨于穩(wěn)定且計(jì)算殘差低于設(shè)置的精度時(shí),則認(rèn)為計(jì)算收斂。
表1 網(wǎng)格無關(guān)性分析
Table 1 Mesh independence analysis
方案類型Programs |
網(wǎng)格數(shù)Mesh number |
揚(yáng)程Head/m |
方案1 Program1 |
2 299 253 |
7.13 |
方案2 Program2 |
3 685 367 |
8.56 |
方案3 Program3 |
3 833 517 |
8.85 |
方案4 Program4 |
3 934 582 |
8.89 |
初步設(shè)計(jì)方案下的外特性曲線如圖3 所示。由原始方案的外特性預(yù)測曲線和數(shù)據(jù)可以看出,高效區(qū)偏至小流量工況,與設(shè)計(jì)目標(biāo)相差較多,且高效區(qū)較窄。因此很有必要對其進(jìn)行優(yōu)化設(shè)計(jì),以使高效區(qū)包含設(shè)計(jì)工況,并且拓寬混流泵的高效區(qū)范圍。
圖3 初步設(shè)計(jì)方案下的外特性曲線
Fig.3 Hydraulic characteristics curve of original designed pump
2 優(yōu)化設(shè)計(jì)方案
由初步設(shè)計(jì)方案的外特性預(yù)測曲線可以看出,高效區(qū)偏向小流量工況,與設(shè)計(jì)目標(biāo)相差較多,因此決定在初步設(shè)計(jì)方案的基礎(chǔ)上減小速度系數(shù)k3,以達(dá)到增大蝸殼斷面的效果。結(jié)合已有的速度系數(shù)統(tǒng)計(jì)曲線和面積比原理,確定速度系數(shù)k3=0.26。增大蝸殼斷面后的優(yōu)化型線方案主要有以下2 種,如圖4 所示,方案1 是單蝸殼優(yōu)化方案,方案2 是雙蝸殼優(yōu)化方案。
對2 種優(yōu)化方案下的混流泵模型進(jìn)行了CFD 數(shù)值計(jì)算,其外特性曲線如圖5 所示,由數(shù)值計(jì)算結(jié)果可以看出,較原始方案相比,2 種優(yōu)化方案下的高效區(qū)流量明顯增大,揚(yáng)程也有明顯的降低,更靠近設(shè)計(jì)目標(biāo),這主要是由于增大蝸殼斷面面積后降低了蝸殼內(nèi)部流速,使其在大流量工況下效率進(jìn)一步得到提高。雙蝸殼優(yōu)化方案和單蝸殼優(yōu)化方案下混流泵的揚(yáng)程曲線和效率曲線比較接近,但雙蝸殼優(yōu)化方案在大流量工況下高效區(qū)比單蝸殼寬。
圖4 不同優(yōu)化方案
Fig.4 Different optimal designed programs
圖5 不同優(yōu)化方案下的外特性曲線對比
Fig.5 Comparison of hydraulic characteristic curves between different optimal designed programs
圖6 為不同流量工況下單蝸殼和雙蝸殼徑向力合力分布圖,從圖6 中可以看出,在小流量向大流量工況變化的過程中,徑向力合力逐漸減小,到達(dá)0.330 m3/s 流量下即設(shè)計(jì)工況下,徑向力合力最小,隨著流量的繼續(xù)加大,單蝸殼徑向力又開始逐漸增大。單蝸殼和雙蝸殼徑向力合力分布整體趨勢一致,且雙蝸殼的徑向力合力在相同工況下均比單蝸殼徑向力合力低。理論上認(rèn)為設(shè)計(jì)工況下徑向力合力為0,但該蝸殼混流泵在設(shè)計(jì)工況下仍有徑向力,主要是由于擴(kuò)散管處的內(nèi)外流道不完全對稱所致,所以雙蝸殼混流泵在保持原有水力性能的同時(shí)還可以起到減小徑向力的作用,因此將雙蝸殼方案作為最終的優(yōu)化方案。
圖6 徑向力對比
Fig.6 Comparison of radial force
3 試驗(yàn)驗(yàn)證
本文所研究的高比轉(zhuǎn)數(shù)蝸殼式混亂泵模型已經(jīng)加工成實(shí)體,并在江蘇大學(xué)高精度多功能水力機(jī)械試驗(yàn)臺上進(jìn)行了效率、空化等水力性能試驗(yàn)。試驗(yàn)葉輪和樣機(jī)如圖7 所示。
圖7 試驗(yàn)葉輪與泵系統(tǒng)
Fig.7 Experimen blades and pump system
試驗(yàn)臺效率綜合允許不確定度優(yōu)于±0.36%,隨機(jī)不確定度在±0.1%以內(nèi),綜合技術(shù)指標(biāo)居國內(nèi)領(lǐng)先水平。試驗(yàn)轉(zhuǎn)速為1 450 r/min,試驗(yàn)水質(zhì)為普通自來水,試驗(yàn)最小雷諾數(shù)為3.63×106,大于3×106,試驗(yàn)條件滿足《水泵模型及裝置模型驗(yàn)收規(guī)程》SL140-2006。在無汽蝕條件下,完成水泵裝置模型葉片角度?4°~4°范圍內(nèi)的能量試驗(yàn)(葉片角度間隔2°),試驗(yàn)點(diǎn)數(shù)不少于15 點(diǎn),將葉片安放角為0 時(shí)混流泵的外特性揚(yáng)程和效率特性試驗(yàn)數(shù)據(jù)與數(shù)值計(jì)算的結(jié)果作對比,如圖8 所示。
圖8 試驗(yàn)與數(shù)值計(jì)算外特性曲線對比
Fig.8 Comparison of hydraulic performances between experiment and numerical calculation
根據(jù)試驗(yàn)數(shù)據(jù)與數(shù)值計(jì)算結(jié)果對比可知,流量-揚(yáng)程曲線偏差較小,流量-效率曲線在非設(shè)計(jì)工況下,特別是大流量工況下有一定的偏差,數(shù)值計(jì)算的效率較高,這是因?yàn)樵跀?shù)值計(jì)算時(shí)沒有考慮壁面粗糙度、容積損失以及機(jī)械損失等因素??傮w而言,試驗(yàn)數(shù)據(jù)與數(shù)值計(jì)算結(jié)果變化趨勢一致且較為吻合,說明數(shù)值計(jì)算的結(jié)果是可靠的,進(jìn)一步說明本文所采用的數(shù)值計(jì)算模型以及方法是正確的。
4 雙蝸殼混流泵內(nèi)部流動特性分析
4.1 蝸殼截面壓力和流線分布
圖9 為設(shè)計(jì)工況下該泵蝸殼截面壓力分布和流線分布圖。從圖9a 中可以看出,不同工況下蝸殼截面的壓力分布中,小流量下的最低壓力最小,隨著流量的增大,最低壓力逐漸變大,而最高壓力變化不大,其中設(shè)計(jì)流量下的最高壓力最小,大流量下最大,同一工況下,蝸殼截面整體壓力從葉輪出口往蝸殼外側(cè)逐漸增大,其中蝸殼隔板內(nèi)側(cè)的壓力是最大的,原因是蝸殼隔板起到壓力平衡作用,由于蝸殼的不對稱性,蝸殼隔板內(nèi)側(cè)受到的壓力最大,從小流量到大流量,蝸殼隔板內(nèi)側(cè)的高壓區(qū)范圍逐漸增大。另外,流動的液體從葉輪流道流入蝸殼后,由于高速旋轉(zhuǎn)的葉輪與靜止的蝸殼之間的相對運(yùn)動,使得蝸殼的壓力沿圓周方向的分布存在明顯的不對稱性;圖9b 為蝸殼截面的流線分布圖,從圖中可以看出,在設(shè)計(jì)工況下,流線分布十分均勻光滑,在0.8Qd工況下,整個(gè)蝸殼截面處流線相對比較紊亂,在隔板進(jìn)口處出現(xiàn)旋渦,原因是流動的液體和隔板發(fā)生沖擊造成的。在1.2Qd工況下,截面流線流速明顯增大,相對流線還是比較光滑,但是在隔板外側(cè)出現(xiàn)2 個(gè)旋渦,這也是該泵的水力性能迅速下降的原因之一。
圖9 蝸殼截面壓力和流線分布
Fig.9 Pressure distribution and streamline of volute surface
圖10 為不同工況下葉片工作面和背面的壓力云圖,從圖10 中可以看出小流量和設(shè)計(jì)工況下,工作面的壓力均大于背面的壓力,而大流量下工作面的壓力小于背面壓力,這也是大流量下泵的水力性能下降迅速的原因之一,隨著流量的增加,葉片工作面的最高壓力逐漸減小,而背面的最高壓力逐漸增大。在小流量工況到設(shè)計(jì)工況下,葉片工作面壓力從輪緣到輪轂逐漸減小,而葉片背面進(jìn)口處壓力最小,出現(xiàn)低壓區(qū),這是最容易發(fā)生空化的部位,葉片背面出口處壓力最高,且從葉片背面進(jìn)口到出口壓力逐漸增大。
圖10 葉片工作面和背面壓力分布
Fig.10 Pressure distribution on blade surface
4.2 葉輪徑向力分布
對非定常計(jì)算所得到的葉輪葉片上壓力積分即得到葉片所受總壓力,將總壓力沿著徑向投影,投影所得到的壓力即為作用在葉輪上的徑向力。圖11 是3 種不同工況下葉輪旋轉(zhuǎn)1 周x和y 方向所受到的瞬態(tài)徑向力軌跡圖,從圖11 中可以看出:3 種工況下徑向力的分布基本一致,均呈類似正方形的封閉區(qū)間分布,在設(shè)計(jì)工況下,徑向力的矢量軌跡圍繞原點(diǎn)均勻分布,在4 個(gè)象限內(nèi)受力呈現(xiàn)均勻分布。在小流量工況下,徑向力的矢量軌跡圍繞原點(diǎn)順時(shí)針方向旋轉(zhuǎn),并且徑向力增加,這是因?yàn)樵谛×髁繒r(shí),蝸殼壓水室中的流動速度從隔舌處開始逐漸減小,壓力逐漸增加。在大流量工況下,徑向力矢量軌跡繼續(xù)順時(shí)針旋轉(zhuǎn),分析原因是在大流量時(shí)蝸殼壓水室中的流速不斷增加,壓力從隔舌處開始減小,每當(dāng)葉輪掃過隔舌時(shí),動靜干涉作用增強(qiáng),作用在葉輪上的徑向力也會隨之有所增強(qiáng)。
圖11 不同工況下葉輪瞬態(tài)徑向力軌跡圖
Fig.11 Radial force trail of impeller under different conditions
圖12 為瞬態(tài)徑向力合力變化時(shí)域圖,從圖12 中可以看出:瞬態(tài)徑向力合力呈現(xiàn)周期性波動,都是4 個(gè)波峰和波谷,與葉輪葉片數(shù)相同,而且每個(gè)周期內(nèi)徑向力的波動情形基本相近,說明葉輪受到的瞬態(tài)徑向力合力隨著葉輪的轉(zhuǎn)動呈現(xiàn)周期性變化。3 種工況下葉輪受到的瞬態(tài)徑向力合力大小由小到大順序依次為1.0Qd、1.2 Qd、0.8 Qd,且瞬態(tài)徑向力合力隨時(shí)間周期性波動的振幅由小到大順序也是1.0 Qd、1.2 Qd、0.8 Qd。由此可以看出小流量下的瞬態(tài)徑向力合力最大,而且最不穩(wěn)定,設(shè)計(jì)工況下的瞬態(tài)徑向力合力最小,也最穩(wěn)定。
圖12 瞬態(tài)徑向力合力變化時(shí)域圖
Fig.12 Time domain characteristics of radial force
5 結(jié)論
1)以混流泵葉輪與蝸殼匹配為目標(biāo),基于速度系數(shù)法,對蝸殼結(jié)構(gòu)進(jìn)行了優(yōu)化設(shè)計(jì),首次開發(fā)了一臺滿足設(shè)計(jì)要求的比轉(zhuǎn)數(shù)為585 的高比轉(zhuǎn)數(shù)雙蝸殼混流泵;混流泵外特性試驗(yàn)結(jié)果與數(shù)值計(jì)算結(jié)果吻合度較高,說明本文所采用的數(shù)值計(jì)算方法對研究混流泵內(nèi)部流動特性具有可行性。
2)雙蝸殼優(yōu)化方案下的高效區(qū)明顯優(yōu)于單蝸殼優(yōu)化方案,且雙蝸殼結(jié)構(gòu)混流泵的徑向力在相同工況下均比單蝸殼結(jié)構(gòu)徑向力弱許多,說明雙蝸殼在保持原有水力性能的基礎(chǔ)上還可以有效起到減小徑向力的作用。
3)不同工況下蝸殼徑向力矢量軌跡圖均呈類似正方形的封閉區(qū)間分布;3 種工況下瞬態(tài)徑向力合力的波動呈現(xiàn)非常規(guī)律的周期性,每個(gè)旋轉(zhuǎn)周期內(nèi)均包含4 個(gè)波峰和波谷,與葉輪葉片數(shù)相同;設(shè)計(jì)工況下的瞬態(tài)徑向力合力最小,而小流量下的瞬態(tài)徑向力合力最大且最不穩(wěn)定,說明當(dāng)混流泵長期運(yùn)行在小流量工況下會增加安全事故隱患。
`參考文獻(xiàn)`
`1` Muggli F A, Holbein P, Dupont P. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow`J`. Journal of Fluids Engineering, 2002, 124(3): 798-802.
`2` 袁壽其,王文杰,裴吉,等. 低比轉(zhuǎn)數(shù)離心泵的多目標(biāo)優(yōu)化設(shè)計(jì)`J`. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(5):46-52.
Yuan Shouqi, Wang Wenjie, Pei Ji, et al. Multi-objective optimization of low-specific-speed centrifugal pump`J`.Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 46-52.(in Chinese with English abstract)
`3` Zhang Yuliang, Li Yi, Cui Bailin, et al. Numerical simulation and analysis of solid-liquid two-phase flow in centrifugal pump`J`. Chinese Journal of Mechanical Engineering, 2013,26(1): 53-60.
`4` Pei Ji, Wang Wenjie, Yuan Shouqi. Statistical analysis of pressure fluctuations during unsteady flow for low-specificspeed centrifugal pumps`J`. Journal of Central South University,2014, 21(3): 1017-1024.
`5` 施衛(wèi)東,邢津,張德勝,等. 后掠式葉片軸流泵固液兩相流數(shù)值模擬與優(yōu)化`J`. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(11):76-82.
Shi Weidong, Xing Jin, Zhang Desheng, et al. Numerical simulation and optimization of solid-liquid two-phase turbulent flow in back swept axial pump`J`. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(11): 76-82. (in Chinese with English abstract)
`6` Zhang Rui, Chen Hongxun. Numerical analysis of cavitation within slanted axial-flow pump`J`. Journal of Hydrodynamics,2013, 25(5): 663-672.
`7` 羅欣,鄭源,馮俊. 軸流泵內(nèi)部流場的數(shù)值模擬`J`. 水電能源科學(xué),2012,29(12):120-122.
Luo Xin, Zheng Yuan, Feng Jun. Numerical simulation of interior flow filed of axial flow pump`J`. Water Resources & Power, 2012, 29(12): 120-122. (in Chinese with English abstract)
`8` 王福軍,張玲,張志民. 軸流泵不穩(wěn)定流場的壓力脈動特性研究`J`. 水利學(xué)報(bào),2007,38(8):1003-1009.
Wang Fujun, Zhang Ling, Zhang Zhiming. Analysis on pressure fluctuation of unsteady flow in axial-flow pump`J`.Journal of Hydraulic Engineering, 2007, 38(8): 1003-1009.(in Chinese with English abstract)
`9` Goto A. Study of internal flows in a mixed-flow pump impeller at various tip clearances using three-dimensional viscous flow computations`J`. Journal of Turbo machinery,1992, 114(2): 373-382.
`10` Manivannan A. Computational fluid dynamics analysis of a mixed flow pump impeller`J`. International Journal of Engineering Science & Technology, 2010, 30(5): 558-566.
`11` Kato C, Mukai H, Manabe A. Large-eddy simulation of unsteady flow in a mixed-flow pump`J`. International Journal of Rotating Machinery, 2003, 9(5): 345-351.
`12` 關(guān)醒凡,楊敬江,袁建平,等. 高比速斜流泵水力模型試驗(yàn)研究`J`. 水泵技術(shù),2002,34(4):3-8,35.
Guan Xingfan, Yang Jingjiang, Yuan Jianping. et al. Study on experiment of high specific mixed-flow pump`J`. Pump Technique, 2002, 34(4): 3-8, 35. (in Chinese with English abstract)
`13` 施衛(wèi)東,鄒萍萍,張德勝,等. 高比轉(zhuǎn)速斜流泵內(nèi)部非定常壓力脈動特性`J`. 農(nóng)業(yè)工程學(xué)報(bào),2011,27(4):147-152.
Shi Weidong, Zou Pingping, Zhang Desheng, et al. Unsteady flow pressure fluctuation of high-specific-speed mixed-flow pump`J`. Transaction of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2011, 27(4): 147-152. (in Chinese with English abstract)
`14` 劉琦. 高比轉(zhuǎn)速混流泵內(nèi)部流場數(shù)值模擬與性能預(yù)測`D`.鎮(zhèn)江:江蘇大學(xué),2006.
Liu Qi. Numercial Simulation of Internal Flow-field and Prediction of Hydraulic Performances of High Specific Speed Mixed-flow Pump`D`. Zhenjiang: Jiangsu University, 2006.(in Chinese with English abstract)
`15` Hao B, Lei T, Cao S L, et al. Prediction method of impeller performance and analysis of loss mechanism for mixed-flow pump`J`. Science China Technological Sciences, 2012, 55(7):1988-1998.
`16` 張暉,李寶良. 基于ANSYS 的混流泵泵體模態(tài)及強(qiáng)度`J`.遼寧工程技術(shù)大學(xué)學(xué)報(bào),2011,30(2):247-250.
Zhang Hui, Li Baoliang. Strength and modal analysis on mixed-flow pump body based on ANSYS`J`. Journal of Liaoning Technical University, 2011, 30(2): 247-250. (in
Chinese with English abstract)
`17` 施衛(wèi)東,郭艷磊,張德勝,等. 大型潛水軸流泵轉(zhuǎn)子部件濕模態(tài)數(shù)值模擬`J`. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(24):72-78.
simulation on modal of large submersible axial-flow pump rotor`J`. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 72-78. (in Chinese with English abstract)
`18` 張雙全,吳俊,秦仕信,等. 基于ANSYS 的混流泵轉(zhuǎn)輪力學(xué)特性分析`J`. 水電能源科學(xué),2010,28(10):107-109.
Zhang Shuangquan, Wu Jun, Qin Shixin,ea al. Dynamic characteristics analysis of mixed-flow pump runner based on ANSYS`J`. Water Resources & Power, 2010, 28(10): 107-109. (in Chinese with English abstract)
`19` 彭桂蘭,郭蘭珂,王旭東,等. 水泵軸承振動信號的時(shí)頻分析`J`. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2001,32(5):47-49.
Peng Guilan, Guo Lanke, Wang Xudong, at al. Timefrequency analysis of vibrating signals of pump bearings`J`.Transactions of the Chinese Society of Agricultural
Machinery, 2001, 32(5): 47-49. (in Chinese with English abstract)
`20` 黎耀軍,沈金峰,洪益平,等. 葉頂間隙對軸流泵輪緣壓力脈動影響的數(shù)值預(yù)測`J`. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2014,45(5):59-63.
Li Yaojun, Shen Jingfeng, Hong Yiping, et al. Numerical investigation of pressure fluctuations on axial-flow pump blades affected by tip-gap size`J`. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 59-63. (in Chinese with English abstract)
`21` 楊立民,陳偉. 煉油廠高溫泵機(jī)械密封的應(yīng)用`J`. 化工設(shè)備與管道,2011,48(4):26-33.
Yang Limin, Chen Wei. Application of the high-temperature pump mechanical seal in refinery`J`. Process Equipment & Piping, 2011, 48(4): 26 - 33. (in Chinese with English abstract)
`22` 談明高,吳賢芳,劉厚林,等. 高比轉(zhuǎn)數(shù)蝸殼式混流泵的設(shè)計(jì)與試驗(yàn)`J`. 流體機(jī)械,2011,39(12):1-4.
Tan Minggao, Wu Xianfang, Liu Houling, et al. Design and experiment for high specific speed mixed flow pump impeller and volute`J`. Fluid Machinery, 2011, 39(12): 1-4. (in Chinese with English abstract)
`23` 楊帆,湯方平,劉超. 大型低揚(yáng)程立式蝸殼混流泵裝置模型試驗(yàn)研究及分析`J`. 水力發(fā)電學(xué)報(bào),2013,32(3):234-240.
Yang Fan, Tang Fangping, Liu Chao. Experimental study on large-scale volute mixed-flow model pump system of low head`J`. Journal of Hydroelectric Engineering, 2013, 32(3):234-240. (in Chinese with English abstract)
`24` 李彥軍,顏紅勤,葛強(qiáng),等. 蝸殼流道高效泵裝置研究`J`.水力發(fā)電學(xué)報(bào),2009,28(6):200-205.
Li Yanjun, Yan Hongqing, Ge Qiang, et al. Research on efficient pump device with new type volute passage of large pumping station`J`. Journal of Hydroelectric Engineering,2009, 28(6): 200-205. (in Chinese with English abstract)
`25` 施偉,張大慶,潘中永,等. 蝸殼式混流泵空化工況揚(yáng)程下降機(jī)理`J`. 排灌機(jī)械工程學(xué)報(bào),2013,31(10):851-855.
Shi Wei, Zhang Daqing, Pan Zhongyong,et al. Head degradation mechanism research on mixed-flow pump under cavitation conditions`J`. Journal of Drainage & Irrigation
Machinery Engine, 2013, 31(10): 851-855. (in Chinese with English abstract)